6,081 research outputs found

    Reference cross section measurements with ALICE in pp and Pb-Pb collisions at LHC

    Full text link
    Cross sections of reference trigger processes were obtained based on beam property measurements in dedicated luminosity calibration experiments (van der Meer scans). These cross-sections are essential for absolute cross section determinations of physics processes. The reference cross sections are presented for pp collisions at two center of mass energies; 2.76 TeV and 7 TeV, and for Pb-Pb collisions at 2.76 TeV together with a discussion of the systematic uncertainty originating from beam intensity and rate measurement uncertainties.Comment: An updated version of proceedings contribution for workshop "LHC Lumi Days 2012", 29 Feb. (2012) at CERN. 11 pages, 8 figure

    Cross section normalization in proton-proton collisions at s\sqrt{s} = 2.76 TeV and 7 TeV, with ALICE at LHC

    Full text link
    Measurements of the cross sections of the reference processes seen by the ALICE trigger system were obtained based on beam properties measured from van der Meer scans. The measurements are essential for absolute cross section determinations of physics processes. The paper focuses on instrumental and technical aspects of detectors and accelerators, including a description of the extraction of beam properties from the van der Meer scan. As a result, cross sections of reference processes seen by the ALICE trigger system are given for proton-proton collisions at two energies; s\sqrt{s}=2.76 TeV and 7 TeV, together with systematic uncertainties originating from beam intensity measurements and other detector effects. Consistency checks were performed by comparing to data from other experiments in LHC.Comment: Quark Matter 2011 Conference Proceedings, 4 pages, 2 figure

    Measurement of π\pi, K, p transverse momentum spectra with ALICE in proton-proton collisions at s=\sqrt{s} = 0.9 and 7 TeV

    Full text link
    Results of the measurement of the π\pi, K, p transverse momentum (ptp_{\mathrm{t}}) spectra at mid-rapidity in proton-proton collisions at s=7\sqrt{s} = 7 TeV are presented. Particle identification was performed using the energy loss signal in the Inner Tracking System (ITS) and the Time Projection Chamber (TPC), while information from the Time-of-Flight (TOF) detector was used to identify particles at higher transverse momentum. From the spectra at s=7\sqrt{s} = 7 TeV the mean transverse momentum () and particle ratios were extracted and compared to results obtained for collisions at s=0.9\sqrt{s} = 0.9 TeV and lower energies.Comment: Quark Matter 2011 proceeding

    Terrain Database Correlation Assessment Using an Open Source Tool

    Get PDF
    Configuring networked simulators for training military teams in a distributed environment requires the usage of a set of terrain databases to represent the same training area. The results of simulation exercises can be degraded if the terrain databases are poorly correlated. A number of methodologies for determining the correlation between terrain databaHowever, there are few computational tools for this task and most of them were developed to address government needs, have limited availability, and handle specific digital formats. The goal of this paper is thus to present a novel open source tool developed as part of an academic research project.Comment: 12 pages, I/ITSEC 201

    Diffraction dissociation in proton-proton collisions at s\sqrt{s} = 0.9 TeV, 2.76 TeV and 7 TeV with ALICE at the LHC

    Full text link
    The relative rates of single- and double- diffractive processes were measured with the ALICE detector by studying properties of gaps in the pseudorapidity distribution of particles produced in proton-proton collisions at s\sqrt{s} = 0.9 TeV, 2.76 TeV and 7 TeV. ALICE triggering efficiencies are determined for various classes of events, using a detector simulation validated with data on inclusive particle production. Cross-sections are determined using van der Meer scans to measure beam properties and obtain a measurement of the luminosity

    The role of vibrationally excited nitrogen and oxygen in the ionosphere over Millstone Hill during 16-23 March, 1990

    No full text
    International audienceWe present a comparison of the observed behavior of the F region ionosphere over Millstone Hill during the geomagnetically quiet and storm period on 16-23 March, 1990, with numerical model calculations from the time-dependent mathematical model of the Earth's ionosphere and plasmasphere. The effects of vibrationally excited N2(v) and O2(v) on the electron density and temperature are studied using the N2(v) and O2(v) Boltzmann and non-Boltzmann distribution assumptions. The deviations from the Boltzmann distribution for the first five vibrational levels of N2(v) and O2(v) were calculated. The present study suggests that these deviations are not significant at vibrational levels v = 1 and 2, and the calculated distributions of N2(v) and O2(v) are highly non-Boltzmann at vibrational levels v > 2. The N2(v) and O2(v) non-Boltzmann distribution assumption leads to the decrease of the calculated daytime NmF2 up to a factor of 1.44 (maximum value) in comparison with the N2(v) and O2(v) Boltzmann distribution assumption. The resulting effects of N2(v > 0) and O2(v > 0) on the NmF2 is the decrease of the calculated daytime NmF2 up to a factor of 2.8 (maximum value) for Boltzmann populations of N2(v) and O2(v) and up to a factor of 3.5 (maximum value) for non-Boltzmann populations of N2(v) and O2(v) . This decrease in electron density results in the increase of the calculated daytime electron temperature up to about 1040-1410 K (maximum value) at the F2 peak altitude giving closer agreement between the measured and modeled electron temperatures. Both the daytime and nighttime densities are not reproduced by the model without N2(v > 0) and O2(v > 0) , and inclusion of vibrationally excited N2 and O2 brings the model and data into better agreement. The effects of vibrationally excited O2 and N2 on the electron density and temperature are most pronounced during daytime
    • …
    corecore